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Abstract—This paper explores the application of vector space 
models and cosine similarity in optimizing the Wordle game. By 
leveraging character-level features, we represent five-letter 
words as multidimensional vectors and iteratively refine 
candidate guesses based on feedback-driven elimination. The 
methodology combines principles from natural language 
processing and computational game theory, showcasing an 
efficient strategy for solving Wordle puzzles by integrating 
vectorized word representations and systematic elimination 
processes. Experimental results demonstrate the algorithm’s 
effectiveness, narrowing down the solution space with high 
accuracy and minimal iterations. The findings highlight the 
broader potential of these techniques for optimization tasks in 
other word-based games and natural language processing 
applications. 
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I.  INTRODUCTION 
Wordle is a popular word puzzle game combining 

simplicity with strategic complexity. Players are tasked with 
guessing a hidden five-letter word within six attempts, 
receiving feedback after each guess. Letters in the right 
position are “green,” letters in the word but in the wrong 
position are “yellow,” and letters not in the word are “grey.” 
This feedback mechanism transforms Wordle into a 
constrained optimization problem, where players iteratively 
refine their guesses based on logical deductions and 
probabilistic reasoning. Despite its simple mechanics, the 
game's underlying complexity has drawn significant interest 
from linguistics and game optimization researchers. 

The fundamental problem of Wordle deals with 
exploitation and exploration. Players must decide whether to 
use new letters in their guesses or to use letters they know are 
not in the solution but redirect them to better understand the 
solution's form. The choice between these two strategies is not 
random. Players use a kind of combinatorial reasoning to 
decide when to switch between the two. This reasoning is 
much easier for human players because they can use all sorts of 
shortcuts, both mental and physical (like writing down 
candidate letters), to get to the solution. 

In this study, we proposed a new use of vector space 
models to optimize the pattern search process in Wordle. Using 

character-level features, we represent words as 
multidimensional vectors and evaluate their closeness using 
cosine similarity. This metric serves well when the aim is to 
find good candidates among many options. Moreover, we 
integrate elimination mechanisms based on the game's 
feedback to convergently and efficiently narrow the options to 
the target word. 

This work draws from the literature on natural language 
processing (NLP) and computational game theory. Vector 
space representations and similarity metrics are used to model 
linguistic and pattern-matching tasks. The proposed 
methodology builds on these ideas to solve a particular 
instance of a combinatorial problem—specifically, the problem 
of creating a linguistically constrained version of Wordle. Our 
approach demonstrates the power of mathematical modeling in 
combinatorics and the potential for these projects to illuminate 
the structure of games played with words. 

This paper is structured as follows: Related research on the 
optimization of Wordle and vector space modeling is reviewed 
in Section 2. The methodology is addressed in Section 3, with 
the construction of vector representations, feedback-based 
elimination processes, and iterative optimization algorithms in 
the limelight. Section 4 presents the experimental setup and 
results, which evaluate the performance of the proposed 
approach against baseline strategies. Section 5 discusses the 
implications of the findings at length, with the conversation 
centering on the potential applications to other word games and 
natural language processing tasks. Finally, Section 6 serves as 
the conclusion, summarising the contributions made and 
looking forward to discussions of future research directions. 

This study illustrates the practical utility of vector space 
models, especially cosine similarities, in addressing complex 
decision-making problems in a popular word game. Moreover, 
the findings extend beyond Wordle, offering insights into 
applying mathematical and computational techniques in fields 
requiring iterative optimization and constrained problem-
solving. 

II. LITERATURE REVIEW 

A. Vector Space 
A vector space is a mathematical structure consisting of 

objects called vectors, which can be added together and scaled 
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by numbers known as scalars, typically real or complex 
numbers, depending on the context. Formally, a vector space V 
over a field F (e.g., the field of real numbers R) is defined by 
two operations: vector addition, which combines two vectors to 
produce a third vector. 

 
 

Also, scalar multiplication which scales a vector by a scalar 
from the field. 

 
These operations are governed by specific axioms that 

ensure the structural integrity of the vector space (Axler, 
2015)[1]. 

To qualify as a vector space, a set V and a field F must 
follow certain rules known as axioms. These include closure 
under addition and scalar multiplication, meaning any two 
vectors added or a vector scaled by a scalar result in another 
vector in V. Addition must be commutative and associative, 
and a zero vector in V must act as an identity for addition. Each 
vector must have an additive inverse, ensuring the sum of a 
vector and its inverse equals zero. Scalar multiplication must 
also be distributed over vector addition and field addition, and 
it must be associative. Lastly, there must be an identity scalar 
in F such that multiplying a vector by this scalar leaves it 
unchanged. These axioms ensure the consistent behavior of 
vectors and scalars in a vector space. 

B. Wordle 
Wordle is a word-based puzzle game that has gained 

widespread popularity for its simplicity and intellectual 
challenge. Players aim to guess a hidden five-letter word within 
six attempts, receiving feedback after each guess. This 
feedback is provided through color-coded tiles: green indicates 
a correct letter in the correct position, yellow signals a correct 
letter in the wrong position, and gray signifies a letter not 
present in the target word. The game is played on a 5x6 grid 
where players input guesses row by row, refining their attempts 
based on the feedback provided. The objective is to deduce the 
target word as efficiently as possible using logical reasoning 
and vocabulary knowledge. 

Wordle can be analyzed as a constraint satisfaction problem 
(CSP), where each guess introduces constraints that narrow the 
solution space by eliminating invalid candidates. Players face 
the challenge of balancing exploration, testing new letters, 
exploitation, and refining knowledge based on feedback ( Shi 
& Chen, 2023)[2]. The game also lends itself to analysis 
through information theory principles. Optimal guessing 
strategies aim to maximize information gained from each 
guess, thereby reducing the entropy of the solution space. Early 
guesses, for instance, often target high-frequency letters and 
diverse patterns to eliminate large subsets of possibilities. 

Regarding computational complexity, Wordle’s design 
maintains a manageable search space. Although a typical 
English dictionary contains around 12,000 five-letter words, 
the game reduces the number of valid target words to around 
2,300 commonly used ones. This limited vocabulary ensures 
the game is solvable within the six-guess constraint. 

From a linguistic and cognitive perspective, Wordle 
engages players’ vocabulary knowledge, pattern recognition, 
and phonetic reasoning. It also involves cognitive strategies 
such as hypothesis testing and deductive reasoning. These 
elements make Wordle valuable for studying human problem-
solving and decision-making processes. 

C. CountVectorizer 
The CountVectorizer from the scikit-learn library is a tool 

in natural language processing (NLP) that converts textual data 
into a numerical format suitable for machine learning models 
(ScikitLearn)[3]. Depending on the specified configuration, it 
creates a "bag of words" representation by tokenizing the input 
text into smaller units, such as characters or words. For 
example, when configured with analyzer="char" and 
ngram_range=(1, 1), the vectorizer tokenizes the text at the 
character level, extracting individual characters as features. 
This configuration is particularly useful for applications like 
spelling correction, phonetic analysis, or games like Wordle, 
where character-level patterns play a crucial role. The 
`ngram_range` parameter further allows customization of token 
sizes, enabling the analysis of sequences of one or more 
characters. The output of `CountVectorizer` is a sparse matrix 
where rows correspond to text samples, columns represent 
tokens, and values denote the frequency of each token in the 
respective text. This numerical representation provides a 
foundation for applying machine learning or computational 
techniques to textual data, making `CountVectorizer` an 
essential preprocessing tool in NLP pipelines. 

After processing the input text, the CountVectorizer 
produces a sparse matrix that encodes the frequency of tokens 
extracted from the text. Each row in the matrix corresponds to 
an individual text sample, such as a word from the vocabulary, 
while each column represents a unique token—in this case, 
individual characters. The matrix values indicate each token's 
frequency within the corresponding text sample. For instance, 
given a vocabulary of ["pace", "space", “peace”], the resulting 
matrix would be like this 
 

s p a c e 

pace 0 1 1 1 1 

space 1 1 1 1 1 

peace 0 1 1 1 2 

Table 1. CountVectorizer Representation of Vocabulary Words 

D. Cosine Simmilarity 
Cosine Similarity is a metric that measures the similarity 

between two vectors in a multidimensional space. It is often 
applied in text analysis and natural language processing tasks. 
In the context of a literature review, cosine similarity helps 
identify relationships or thematic overlaps between academic 
papers, books, or other textual resources. This is particularly 
useful when comparing abstracts, keywords, or full texts of 
documents. Mathematically, cosine similarity is defined as the 
cosine of the angle between two vectors. Given two vectors, A 
and B, the formula is: 
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One of its key features is its range, which spans from −1 to 
1. A value of 1 indicates perfect similarity, where the vectors 
are aligned in the same direction. A value of 0 signifies no 
similarity, as the vectors are orthogonal, and −1 indicates that 
the vectors are opposed. Another significant feature is that 
cosine similarity is scale-invariant, meaning it is unaffected by 
the magnitude of the vectors. This makes it particularly 
valuable in applications like text analysis, where the focus is on 
the direction and not the magnitude of document vectors. 

In terms of applications, cosine similarity is widely used in 
various domains. Text analysis measures the similarity between 
documents or terms represented in high-dimensional spaces, 
such as TF-IDF vectors. It is also instrumental in recommender 
systems, where it helps identify items similar to a user's 
preferences. Furthermore, cosine similarity serves as a distance 
measure in clustering and classification algorithms, aiding in 
grouping or categorizing data based on similarity. 

Turney (2001)[4] demonstrated the efficacy of cosine 
similarity in determining semantic relationships through Latent 
Semantic Analysis (LSA) for synonym recognition and 
analogy tasks. This work established cosine similarity as a 
cornerstone for relational analysis in NLP. 

Levy and Goldberg[5] (2014) extended the use of cosine 
similarity to evaluate word embeddings produced by neural 
models. They compared cosine similarity with other metrics, 
reinforcing its robustness in tasks like analogy completion and 
clustering. 

E. NLTK words 
The Natural Language Toolkit (NLTK) is a widely 

recognized Python library for natural language processing 
(NLP) tasks. It provides a comprehensive suite of tools for 
tokenization, stemming, tagging, parsing, and more, 
simplifying complex text processing workflows for 
researchers, developers, and educators. Among its standout 
features is the words module, which grants access to extensive 
word lists and linguistic corpora. These resources are pivotal 
for numerous NLP applications, including stopword removal, 
stemming, spell-checking, and generating linguistic 
annotations. The words module integrates seamlessly with 
tools like WordNet, a lexical database of English, enabling 
sophisticated semantic analyses such as measuring word 
similarity and exploring hierarchical relationships like 
synonyms, antonyms, and hypernyms. For instance, WordNet 
organizes words into synsets (sets of synonyms) and provides 
their definitions and contextual examples, enhancing the 
analysis of semantic relationships in textual data (Perkins, 
2014)[6]. 

NLTK’s capabilities have been extensively utilized in both 
academic and industrial contexts. The words module and 
NLTK’s tokenization and text parsing tools have been 
employed in spell-checking systems, sentiment analysis, and 
text classification. It is particularly valuable in tasks requiring 

preprocessing, such as removing stopwords, identifying parts 
of speech, and reducing words to their base forms via 
stemming or lemmatization. Additionally, its integration with 
WordNet enables advanced applications like question 
answering, keyword extraction, and building semantically 
aware models for chatbots and virtual assistants. As a result, 
NLTK has become a cornerstone in NLP education and 
practice, facilitating diverse applications in fields such as 
information retrieval, sentiment analysis, and computational 
linguistics. 

F. Feedback-Based Optimization Strategies 
Feedback-driven elimination algorithms play a crucial role 

in optimizing Wordle gameplay, as they systematically narrow 
down the set of possible solutions based on the feedback 
provided for each guess. By leveraging the feedback, such 
algorithms iteratively refine the set of valid candidate words, 
improving the efficiency of future guesses. 

Wang et al.[7] (2019) contributed significantly to this 
domain by proposing integrating feedback-driven elimination 
with advanced similarity metrics and visual optimization 
techniques. Their approach involved tailoring Wordle-like 
puzzles using shape-aware designs, which account for word 
representations' visual and structural properties. This 
framework improved the computational efficiency of solution 
algorithms and introduced visual feedback mechanisms to aid 
in understanding the elimination process. The method 
effectively highlighted the interplay between algorithmic 
optimization and user interaction by aligning visual cues with 
computational decisions. 

III. IMPLEMENTATION 
A program was implemented using Python to develop a 

more efficient solution for the Wordle puzzle game. The 
program leverages natural language processing (NLP) libraries 
to create a robust method for iteratively narrowing down 
possible solutions based on feedback. It combines linguistic 
resources, such as the NLTK words corpus, with machine 
learning tools like cosine_similarity to evaluate and refine 
guesses systematically. 

The program begins by importing the necessary libraries, 
including nltk, numpy, and Scikit-learn modules. The 
nltk.corpus.words dataset is used to create a list of valid five-
letter words in English. After downloading the corpus, all 
words are converted to lowercase, and those with lengths other 
than five characters are filtered out. This ensures that the 
vocabulary aligns with the constraints of the Wordle game. 

To prepare these words for numerical analysis, the program 
utilizes the CountVectorizer from Scikit-learn. Configured with 
analyzer="char" and ngram_range=(1, 1), the vectorizer 
tokenizes the words into individual characters, creating a 
matrix where each row corresponds to a word, and each 
column represents a character's frequency in that word. This 
transformation converts the vocabulary into a format suitable 
for similarity calculations. A dictionary, word_map, is then 
created to map each word to its corresponding vector 
representation, facilitating efficient access during subsequent 
computations. 
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Figure 1. Implementation of Vocabulary Preparation 

Source: https://github.com/qodriazka/Vector-Space-in-Wordle 
 

To guide the guessing process, the program incorporates a 
function called compute_similarity. This function calculates the 
cosine similarity between a given word and a list of candidate 
words. Cosine similarity measures the closeness of two vectors 
by computing the cosine of the angle between them. It is 
particularly useful in this context because it quantifies how 
similar the letter composition of two words is, regardless of 
their overall frequency or magnitude. 

The function first checks if the given word exists in the 
vocabulary. It then extracts the vector representation of the 
word and compares it with the vectors of all candidate words. 
The resulting similarity scores are returned as a dictionary, 
where each candidate word is paired with its similarity score. 
These scores are later used to rank the candidates, ensuring the 
next guess is as informed as possible. 

 
Figure 2. Implementation of Similarity Computation 

Source: https://github.com/qodriazka/Vector-Space-in-Wordle 
 

The program's decision-making process relies on its ability 
to interpret Wordle feedback, handled by the 
eliminate_candidates function. This function iterates through 
the list of candidate words, filtering out those that do not 
comply with feedback rules represented by a five-character 
string: "G" (green) for correct letters in the correct position, 
"Y" (yellow) for correct letters in the wrong position, and "X" 
(grey) for letters not present in the word. For each candidate 
word, the function ensures it meets these constraints, 
discarding those that violate the rules. This process 
progressively narrows the candidate pool, sharpening the 
program’s focus for the next iteration. 

 
Figure 3. Implementation of Candidate Elimination Based on 

Feedback 
Source: https://github.com/qodriazka/Vector-Space-in-Wordle 
 

The main section of the program begins by initializing the 
candidate pool to include all words from the prepared 
vocabulary. The first guess is chosen randomly from this list, 
and the user is prompted to enter feedback based on the game’s 
response to this guess. Feedback validation ensures that the 
input matches the expected format of five characters using only 
X, Y, and G. 

If the feedback indicates that the guess is correct (all G), the 
program announces success and exits. Otherwise, it calls the 
eliminate_candidates function to update the candidate list based 
on the feedback. Next, the program uses the 
compute_similarity function to rank the remaining candidates 
by their similarity to the current guess. It selects the word with 
the highest similarity score as the next guess. 

This iterative process continues, with each step refining the 
candidate pool and improving the guesses based on feedback 
and similarity scores. The program also provides diagnostic 
information, such as the number of remaining candidates and 
the top five most similar words, allowing users to understand 
the decision-making process. 

 
Figure 4. Implementation of Main Algorithm (Iterative guess) 
Source: https://github.com/qodriazka/Vector-Space-in-Wordle 

 

The program includes safeguards to handle scenarios where 
no valid candidates remain, which may occur due to incorrect 
feedback or limitations in the vocabulary. In such cases, it 
terminates gracefully with an error message, prompting the 
user to review the feedback or input. 
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This implementation demonstrates how computational 
methods can be applied to solve Wordle systematically. By 
combining linguistic resources, vector-based similarity 
measures, and feedback-driven elimination, the program 
exemplifies the use of NLP and machine learning techniques to 
address real-world problems in an efficient and interpretable 
manner. 

 
Figure 5. Implementation of Error Handling 

Source: https://github.com/qodriazka/Vector-Space-in-Wordle 
 

IV. EXPERIMENT 

A. Test Case 1 
 This test case illustrates the systematic and computationally 
guided application of the Wordle-solving algorithm. The 
algorithm utilizes feedback-driven elimination, cosine 
similarity measures, and an iterative guessing approach to 
identify the correct word efficiently. For this test, the correct 
answer is “CLOUD.” Below is a scientific breakdown of the 
process and its outcomes. 

 
Figure 6. First Guess in Test Case 

  
The program begins with an initial guess of "CABER," 

chosen randomly from the vocabulary. The feedback entered is 
GXXXX, indicating that the first letter "c" is correct and 
positioned correctly, while the other letters are not part of the 
target word. 

Following this, the candidate elimination process applies 
feedback rules to exclude all words that do not start with "c" or 
contain any of the letters "a," "b," "e," or "r" in any position, 
reducing the pool of candidates to 141 possibilities. 

To refine the selection further, cosine similarity is 
calculated between the vector representation of "CABER" and 
the remaining candidates. The top five words are identified 
based on similarity scores, including "COCCI" with a score of 
0.4045. Among these, "COCCI," the word with the highest 
similarity score, is selected as the next guess. 

 
Figure 7. Second Guess in Test Case 

 

The second guess, "COCCI," receives feedback GYYYX, 
indicating that the first letter "c" is correct and in the correct 
position, the second and third letters "o" and "c" are correct but 
not in the correct positions, and the fifth letter "i" is not part of 
the target word. Following this feedback, candidate elimination 
excludes words starting with "c" that do not contain "o" and "c" 
in positions 2 and 3, as well as those containing "i," reducing 
the candidate pool to 23 words. Cosine similarity is then 
recalculated for the remaining candidates, and "cholo" is 
identified as the next guess with a similarity score of 0.5698, 
tied with several others. The selection of "CHOLO" reflects the 
program's systematic prioritization of equally high-scoring 
candidates. 

 
Figure 8. Third Guess in Test Case 

 The third guess, "CHOLO," receives feedback GXGYY, 
indicating that the first letter "c" and the third letter "l" are 
correct and in their correct positions, while the fourth and fifth 
letters "o" are correct but mispositioned. Based on this 
feedback, the candidate elimination process excludes words 
that do not align with the updated rules, reducing the pool to 8 
viable candidates. Cosine similarity is then computed for these 
remaining words, with "cloof," "cloop," and "cloot" emerging 
as the top candidates, each scoring 0.8571. Due to its high 
similarity score, the algorithm selects "CLOOF" as the next 
guess. 

 
Figure 9. Third Guess in Test Case 

The fourth guess, "CLOOF," yields feedback GGGYX, 
indicating that the first three letters "c," "l," and "o" are correct 
and in their correct positions, while the fifth letter "f" is not 
part of the target word. Following this feedback, the candidate 
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elimination process removes words that do not meet the 
updated constraints, narrowing the pool to four remaining 
candidates: "CLOUD," "CLOUT," and "CLOWN." Cosine 
similarity is then recalculated, and "cloud" is selected as the 
next guess due to its highest similarity score of 0.6761. 

 
Figure 10. Final Guess in Test Case 

The fifth guess, "CLOUD," receives feedback GGGGG, 
indicating that all letters are correct and in position. The 
algorithm successfully identifies the target word in five 
guesses. 

The algorithm demonstrates significant efficiency by 
systematically reducing the candidate pool with each iteration. 
Starting with 141 candidates after the first feedback, it 
efficiently narrows the possibilities, arriving at the correct word 
in just four subsequent guesses. This process combines 
linguistic constraints and similarity metrics to optimize the 
guessing strategy. 

Using cosine similarity provides a quantitative approach to 
measure the alignment between vector representations of the 
current guess and the remaining candidates. This method 
allows the algorithm to prioritize words most likely to align 
with the target, effectively balancing exploration and 
exploitation during the guessing process. 

Feedback-driven elimination translates the provided 
feedback into precise rules that refine the solution space 
dynamically. This ensures that all remaining candidates comply 
with the game's constraints, leading to a more focused and 
effective search. 

Finally, the program exhibits robust performance by 
gracefully managing ties in similarity scores and adapting 
seamlessly to updated feedback. This resilience highlights its 
capability to handle the task's inherent uncertainty and 
complexity. 

B. Test Case 2 

 
Figure 11. Second Test Case 

This test case illustrates how a Wordle-solving program 
attempts to guess the target word based on feedback. It begins 
with the guess "BELIS," and feedback of "XXXXX" 
eliminates all words containing the letters b, e, l, i, or s, 
reducing the candidate pool to 1663 words. With no further 
information, it guesses "AARON," but feedback of "XXXXX" 
again excludes words with a, r, o, or n, leaving 67 candidates. 
The next guess, "CHUCK," also receives "XXXXX," further 
shrinking the pool to 2 words. The program then guesses 
"PYGMY," and feedback of "XXXXX" eliminates all 
remaining candidates. At this point, the program stops, 
reporting no valid candidates left, likely because the target 
word is not in the vocabulary or the feedback provided was 
inaccurate. This case proves that the Wordle-solving program 
uses feedback to eliminate candidates iteratively but fails to 
find the target word, likely due to incorrect feedback. 

 

V. IMPLICATION 
This code demonstrates a computational framework for 

solving Wordle, utilizing vector representations, similarity 
metrics, and feedback-driven elimination. Beyond Wordle, its 
methodology lays a foundation for optimizing strategies in 
other word-based games and natural language processing 
(NLP) tasks. 

The approach is versatile and can be adapted to games like 
Scrabble and crosswords, where cosine similarity and 
elimination techniques help identify optimal moves by 
comparing word vectors to game constraints. Hangman's 
feedback-driven elimination mechanism closely aligns with 
Wordle’s iterative narrowing process, systematically reducing 
candidate words. For Boggle or word search puzzles, 
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integrating vector representations could aid in identifying 
high-scoring or hidden words by evaluating character 
adjacency or predefined rules. Moreover, this method could 
inform adaptive word-based learning tools, tailoring puzzles to 
players' vocabulary levels for maximized engagement and 
educational value. 

In NLP, the techniques have broad applications in pattern 
recognition, similarity analysis, and constrained search. 
Cosine similarity is valuable for tasks such as text similarity 
and query expansion in search engines, where algorithms 
suggest semantically related queries or refine results. The 
feedback-driven elimination algorithm could improve context-
aware spelling correction by iteratively narrowing down 
suggestions based on valid dictionary matches. Similarly, 
constrained next-word prediction models, such as 
autocomplete systems or assistive writing tools, could benefit 
from this method, enhancing accuracy in text generation. 
Interactive systems like chatbots and virtual assistants can use 
feedback mechanisms to refine responses for improved 
conversational relevance. 

Beyond games and NLP, this methodology has machine 
learning and data analysis implications. Cosine similarity is 
central to clustering algorithms, while iterative elimination can 
be adapted for semi-supervised clustering with user-imposed 
constraints. Recommender systems could employ feedback-
driven refinement to personalize movie, product, or content 
suggestions effectively. 

Expanding the implementation could involve integrating 
pre-trained embeddings like Word2Vec or BERT for nuanced 
semantic understanding or adapting the vocabulary for 
multilingual applications. Optimization techniques would also 
enhance scalability for larger datasets or complex rules. 

From a scientific perspective, this framework mirrors 
human problem-solving, providing insights into cognitive 
psychology and human-computer interaction. It is also a 
robust teaching tool in computational linguistics and AI, 
illustrating fundamental concepts in vector spaces, similarity 
metrics, and constraint-based algorithms. 
 

VI. CONCLUSION 
The study presents a novel computational approach to 

solving Wordle by employing vector space models and cosine 
similarity to reduce the solution space systematically. The 
algorithm efficiently identifies target words through feedback-
driven elimination and iterative refinement, demonstrating the 
robustness of mathematical and computational methods in 
constrained decision-making tasks. Beyond Wordle, this 
framework offers valuable insights for optimizing strategies in 
various word-based puzzles and natural language processing 
challenges. Future work could extend the methodology to 
incorporate pre-trained embeddings, multi-language support, 
and applications in interactive NLP systems, underscoring the 
versatility of this approach in solving complex linguistic and 
combinatorial problems. 
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